Ring Expansion of Nitrogen-containing Chloromethylheteroalicycles via Aziridinium Intermediates

Toshiya Morie, ${ }^{*, a}$ Shiro Kato, ${ }^{a}$ Hiroshi Harada, ${ }^{a}$ Iwao Fujiwara, ${ }^{a}$ Kazuo Watanabe ${ }^{\text {b }}$ and Jun-ichi Matsumoto ${ }^{\text {a }}$
${ }^{a}$ Exploratory Research Laboratories, Dainippon Pharmaceutical Co., Ltd., Enoki 33-94, Suita, Osaka 564,
Japan
b Information Department, Dainippon Pharmaceutical Co., Ltd., Enoki 33-94, Suita, Osaka 564, Japan

Abstract

The nucleophilic reaction of NaN_{3} with the chloromethylheteroalicycles, 4-benzyl-3-chloromethyl-morpholine 5a, -tetrahydro-4H-1,4-thiazine 5b, -1-methylpiperazine 5c and 1-benzyl-2-chloromethylpiperidine 5d, gave the ring-expanded compounds 6-azido-4-benzylhexahydro-1.4oxazepine 11a and its analogues 11b-d along with the normally substituted compounds 3-azidomethyl-4-benzylmorpholine 10 a and its analogues 10b-d in varying ratios. LUMO frontier electron densities of the reaction centres indicated that the reaction proceeded via the aziridinium intermediate 9 and accounted for the predominance of the reaction product 10 or 11.

Our previous paper ${ }^{1}$ reported the synthesis of 4 -amino- $N-[(4-$ benzylmorpholin-2-yl)methyl]-5-chloro-2-ethoxybenzamide 1 as a potential gastroprokinetic agent. Further modifications of the benzoyl moiety ${ }^{1.2}$ and the N-benzyl group ${ }^{3,4}$ of 1 led to the finding that 4 -amino-5-chloro-2-ethoxy- N - $\{[4$-(4-fluoro-benzyl)morpholin-2-yl]methyl \}benzamide (2, mosapride) shows potent gastroprokinetic activity without dopamine D_{2} receptor antagonistic action; mosapride is currently under clinical study. In order to gain further insight into the structureactivity relationships of a series of 4-amino-5-chloro-2-ethoxybenzamide derivatives, we initially planned a synthesis of the benzamide derivatives 3a-d substituted regioisomerically by N -

benzyl six-membered heteroalicycles, starting with the chloromethylheteroalicycles 5a-d available easily, via the aminomethyl derivatives $\mathbf{4 a - d}$.

Brown et al. ${ }^{5}$ had reported that the reaction of 4-benzyl-3chloromethylmorpholine 5a with cyanide anion as a strong nucleophile gave exclusively 4-benzyl-3-cyanomethylmorpholine 6a, whereas the reaction with the weakly nucleophilic phenoxide anion afforded 4-benzyl-6-phenoxyhexahydro-1,4oxazepine 8 and 4-benzyl-3-(phenoxymethyl)morpholine 7a via the postulated aziridinium intermediate 9 a . We hence expected that the reaction of $5 \mathbf{a}-\mathbf{d}$ with NaN_{3} which was considered a strong nucleophile, followed by reduction of the resulted azide,
would give the desired amines $4 \mathbf{a}-\mathrm{d}$. An attempted reaction of 4-benzyl-3-chloromethylmorpholine 5a with NaN_{3} resulted, however, in the concomitant formation of a ring-expanded hexahydro-1,4-oxazepine derivative 11a along with the expected 3-azidomethyl-4-benzylmorpholine 10a (Scheme 1).

a $\mathrm{X}=\mathrm{O}, \mathrm{b} \quad \mathrm{X}=\mathrm{S}, \mathrm{c} \quad \mathrm{X}=\mathrm{NMe}, \mathrm{d} \mathrm{X}=\mathrm{CH}_{2}$
Scheme 1 Reagents: i, NaN ; ii, $\mathrm{Na}\left[\mathrm{AlH}_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}\right)_{2}\right]$; iii, $\mathrm{Ac}_{2} \mathrm{O}$

An interest in such ring expansions led us to an extensive study of nucleophilic reactions of azide anions with the sixmembered heteroalicycles 5a-d $\left(\mathrm{X}=\mathrm{O}, \mathrm{S}, \mathrm{NMe}\right.$ and $\left.\mathrm{CH}_{2}\right)$ containing a chloromethyl group at the position adjacent to a nitrogen atom. This is the primary subject of the present paper, in which we also discuss the control of the reaction in terms of frontier electron densities of the reaction centres.

The reaction of 5 a with NaN_{3} in acetonitrile afforded an inseparable mixture of products 10a and 11a (Scheme 1) for which retention times of 6.6 and 7.9 min , respectively, were observed, in an approximately $7: 3$ ratio by high performance liquid chromatography (HPLC). The mixture of products 10a and 11a was reduced with sodium bis(2-methoxyethoxy)aluminium hydride, followed by acetylation with $\mathrm{Ac}_{2} \mathrm{O}$, to afford a mixture of the acetylamino derivatives 12a and 13a. The mixture was separated into the more polar compound 12a (57%) and the less polar compound 13a (24%), by mediumpressure column chromatography on silica gel. The structures of 12a and 13a were assigned as 3-(acetylamino)methyl-

4-benzylmorpholine and 6-acetylamino-4-benzylhexahydro1,4 -oxazepine, respectively, by the evidence described later. Accordingly, the initial products 10 a and 11a were the morpholine and hexahydro-1,4-oxazepine analogues, respectively.
The MS spectra of 12a and 13a showed fragment peaks at m / z $176\left(\mathrm{M}^{+}-72\right)$ and $189\left(\mathrm{M}^{+}-59\right)$ attributable to 4-benzylmorpholine and 4 -benzylhexahydro-1,4-oxazepine moieties, respectively. The ${ }^{1} \mathrm{H}$ NMR spectrum of 12a, similar to that of the starting material 5 a , verified the presence of a morpholine ring and a methylene appendage at the side chain. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 13a, the C-6 methine proton signal was observed at $\delta 4.10$ as a distinctive multiplet signal like that of $\mathbf{8}$ appearing at $\delta 4.48$. Confirmation of the assigned structure of 13a was provided by the alternative synthesis from commercially available N-benzyloxycarbonyl-dl-serine 14 (Scheme 2). Thus,

Scheme 2 Reagents: i, $\mathrm{PhCH}_{2} \mathrm{NH}_{2}, \mathrm{EtN}=\mathrm{C}=\mathrm{N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NMe}_{2} \cdot \mathrm{HCl}$; ii, $\mathrm{BH}_{3} \cdot \mathrm{THF}$; iii, $\mathrm{ClCOCH}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}$; iv, $\mathrm{Bu}^{\prime} \mathrm{OK} ;$ v, $\mathrm{BH}_{3} \cdot \mathrm{THF}$; vi, HBr ; vii, $\mathrm{Ac}_{2} \mathrm{O}$
the treatment of 14 with benzylamine gave N-benzyl-2-(benzyl-oxycarbonyl)amino-3-hydroxypropionamide 15 , which was then reduced with a borane-tetrahydrofuran complex $\left(\mathrm{BH}_{3} \cdot \mathrm{THF}\right)$ to afford 16. The reaction of 16 with chloroacetyl chloride followed by treatment of the resulting 3 -chloroacetylaminopropanol 17 with potassium tert-butoxide (Bu'OK) gave 4-benzyl-6-(benzyloxycarbonyl)aminohexahydro-1,4-oxazepin-3-one 18. Reduction of 18 with $\mathrm{BH}_{3} \cdot$ THF afforded 4-benzyl-6-(benzyloxycarbonyl)aminohexahydro-1,4-oxazepine 19. Removal of the benzyloxycarbonyl group of 19 by hydrogen bromide, followed by treatment with $\mathrm{Ac}_{2} \mathrm{O}$, afforded the hexahydro-1,4-oxazepine derivative 13a. Compound 13a thus prepared was identical in all respects with the ring-expanded product obtained previously.
Few reports have appeared on the ring expansion of sixmembered heteroalicycles containing a nitrogen atom, other than the reaction reported by Brown et al. ${ }^{5}$ For a better understanding of the reaction, our attention was focussed on the reactions of 4-benzyl-3-chloromethyl-tetrahydro-4 $\mathrm{H}-1,4$ thiazine 5b, -1-methylpiperazine $5 \mathbf{c}$ and 1-benzyl-2-chloromethylpiperidine 5 d , prepared by conventional methods, with NaN_{3}. These gave mixtures of $\mathbf{1 0 b - d}$ and $11 \mathrm{~b}-\mathrm{d}$, respectively, in ratios determined by HPLC (Table 1). Reduction and successive acetylation of each mixture of $10 \mathrm{~b}-\mathrm{d}$ and $11 \mathrm{~b}-\mathrm{d}$ under the same conditions as employed previously afforded the corresponding products $\mathbf{1 2 b - d}$ and $\mathbf{1 3 b - d}$. On the basis of MS and ${ }^{1} \mathrm{H}$ NMR spectral data, 12b-d and $\mathbf{1 3 b}$-d were assigned as the normally substituted six-membered products and the ringexpanded seven-membered products, respectively. The struc-

Table 1 Ratios and retention times of compounds 10a-d and 11a-d

Starting compound	X	Ratio ${ }^{\text {a }}$	Retention time ${ }^{a}$ (min)	
		10:11	10	11
5a	0	68:32	6.6	7.9
5b	S	44:56	12.2	13.4
5c	NMe	85:15	$8.2{ }^{\text {b }}$	$3.3{ }^{\text {b }}$
$5 d$	CH_{2}	38:62	$6.6{ }^{\text {b }}$	$9.3{ }^{\text {b }}$

${ }^{a}$ Determined by HPLC analysis, using CAPCELL PAK C^{18} : $4.6 \times 150 \mathrm{~mm} ; 0.05 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}-\mathrm{MeCN}(90: 10)$; flow rate $1.0 \mathrm{ml}^{3}$ $\min ^{-1}$ at $25{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Eluent: $0.05 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}-\mathrm{MeCN}(85: 15)$.
tures of $\mathbf{1 3 b}$-d were confirmed by their unambiguous synthesis (Scheme 3). The treatment of methyl 2-acetylaminoacrylate $21{ }^{6}$ with 2-benzylaminoethanethiol $\mathbf{2 2}^{7}$ gave methyl 2-acetylamino-3-[2-(benzylamino)ethylsulfanyl]propionate 24. Partial reduction of 24 with diisobutylaluminium hydride at $-70^{\circ} \mathrm{C}$, followed by reductive cyclization of the resulting amino aldehyde 26 without isolation afforded the 1,4-thiazepine 13b; the cyclization was considered to proceed via the imminium salt of 26. According to the same procedure using N^{1}-benzyl $-N^{2}$ methylethylenediamine $\mathbf{2 3}^{8}$ in place of $\mathbf{2 2}$, the 1,4 -diazepine $\mathbf{1 3 c}$ was prepared. The azepine 13d was obtained by treatment of the known 3-amino-1-benzylhexahydro-1 H -azepine ${ }^{9}$ with $\mathrm{Ac}_{2} \mathrm{O}$. Compounds 13b-d thus prepared were identified with the corresponding ring-expanded products obtained from $\mathbf{5 b}$-d.

Scheme 3 Reagents: i, $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}\right]_{2} \mathrm{AlH}$; ii, NaBH_{4}
The ratio of 10 vs .11 interestingly varied according to the nature of the heteroatom X in 5 (Table 1). Thus, when X was oxygen (5a) and nitrogen (5c), the six-membered compounds 10 a and 10 c predominated over the seven-membered compounds 11 a and 11c, respectively. Conversely, when X was CH_{2} (5d) the seven-membered compound 11d predominated over the six-membered compound 10d. The tetrahydro- $4 \mathrm{H}-1,4-$ thiazine derivative $\mathbf{5 b}(\mathbf{X}=\mathbf{S})$ formed nearly equal amounts of 10b and 11b. In summary, the ratio of the seven-membered compound 11 to the six-membered compound 10 increased in the order $\mathrm{NMe}(5 \mathrm{c})<\mathrm{O}(5 \mathrm{a})<\mathrm{S}(5 \mathrm{~b})<\mathrm{CH}_{2}(5 \mathrm{~d})$.

Table 2 LUMO frontier electron densities [$f r(n)]$ for 5a-d and 9a-d

Table 3 Frontier electron densities $[f r(n)]$ for the aziridinium intermediates $9 \mathrm{a}-\mathrm{d}$ and the formation ratios (10:11)

Compound a	\mathbf{X}	$f r(1)$	$f r(2)$	$\mathbf{1 0}: 11$
9c	NMe	0.3316	0.2518	$85: 15$
9a	O	0.3195	0.2690	$68: 32$
9b	\mathbf{S}	0.2738	0.3008	$44: 56$
9d	CH_{2}	0.2175	0.3509	$38: 62$

${ }^{a}$ Arranged by the ascending order of the seven-membered ring product 11.

Further interest in the mode of reactions of 5 with NaN_{3} led us to carry out a computational study of the starting compounds 5a-d and the postulated intermediates 9a-d. Semiempirical molecular orbital calculations were performed by the AM1 method ${ }^{10}$ with the MOPAC package of programs with molecular geometry optimization. As the measure of reactivity against a nucleophile, we adopted values of LUMO frontier electron densities $f r(1)$ and $f r(2)$ for the methylene carbon (1) and the methine carbon (2), respectively, of 5 a-d and $9 \mathrm{a}-\mathrm{d}$ (Table 2). A comparison of the $f r$ values between each pair of compounds clearly shows that all the aziridinium intermediates $9 \mathrm{a}-\mathrm{d}$ have much higher electron densities and, accordingly, are much more reactive than the corresponding chloromethyl compounds 5a-d towards nucleophiles. Thus, it is reasonably concluded that the reaction proceeds via the aziridinium intermediates $9 \mathrm{a}-\mathrm{d}$.

To make a comparison between reactivities of the aziridinium intermediates $9 \mathrm{a}-\mathrm{d}$ and product ratio of 10 vs .11 easier, the values of $f r(\mathrm{n})$ of $9 \mathrm{a}-\mathrm{d}$ and the formation ratio (10:11) are shown again in Table 3. In 9a $(X=O)$ and 9c $(X=N M e)$, their $f r(1)$ values are higher than their $f r(2)$ values, thus showing that the methylene carbon(1) is more reactive than the methine carbon(2) and hence an attack of the azide anion proceeds at the methylene carbon(1) rather than at the methine carbon(2), leading to the predominant formation of 10a, \mathbf{c} over 11a, \mathbf{c} in accordance with the experimental observation. In the case of $\mathbf{9 b}$ $(\mathbf{X}=\mathbf{S})$, the $f r(1)$ and $f r(2)$ values are similar, so accounting for the formation of nearly equal amounts of 10 b and $\mathbf{1 1 b}$. As for 9 d ($\mathrm{X}=\mathrm{CH}_{2}$), its $f r(2)$ is greater than $f r(1)$, a situation which reflects the fact that 11d is the major product.

In summary, the nucleophilic reaction of 4-benzyl-3-chloromethylmorpholine 5a and its analogues 5 b-d with NaN_{3} proceeded via the aziridinium intermediates 9a-d to give the novel ring-expanded products 11a-d as well as the normally substituted six-membered products 10a-d in a ratio dependent on the electronic nature of the hetero atom X. Predominance of either product 10 or 11 is reasonably explained by the frontier electron densities ($f r$) for the methylene carbon(1) and the bridge-head methine carbon(2) of the aziridinium intermediates 9a-d.

We have thus far discussed the reactivity of the reactant 5
and the intermediate 9 without taking account of the nature of the azide anion as a nucleophile. In order to generalize the explanation of the reactions of 5 with other nucleophiles, such as the cyanide anion examined by Brown et al., it is necessary to calculate the transition state including the nucleophile. This will be studied later.

Experimental

All melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. IR spectra were recorded on a Hitachi 260-10 spectrometer. MS spectra were taken by the electron-impact method on a JEOL JMS D-300 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian GEMINI-200 (200 MHz) or Varian XL-300 (300 MHz) spectrometer. Chemical shifts are expressed as $\delta(\mathrm{ppm})$ values with tetramethylsilane as an internal standard and coupling constants (J) are given in Hz. Analytical HPLC was carried out on Shimadzu LC-6A system. Organic extracts were dried over anhydrous MgSO_{4}. The solvent was evaporated under reduced pressure. Merck Kieselgel 60 and Yamazen YFLC gel were used for column chromatography.

Molecular Modelling and Molecular Orbital Calculation.The structures of the aziridinium cations 9a-d and the chloromethyl compounds 5a-d were built up using molecular modelling package MOL-GRAPH (Ver. 2.8 available from Daikin Industries Ltd., Shinjuku-ku Tokyo). Semiempirical MO calculations using program MOPAC (Ver. 6.0. QCPE program No. 455) with AM1 hamiltonian were run on a μ-VAX 3600 computer. The value of frontier electron density $(f r)$ was calculated according to the following equation

$$
f r(\mathrm{n})=\sum^{\text {LUMO }} 2 \cdot{ }^{n} \mathrm{Cr}^{2}
$$

where ${ }^{n} \mathrm{Cr}$ is the LCAO coefficient of $2 \mathrm{~s}, 2 \mathrm{px}, 2 \mathrm{py}$ and 2 pz atomic orbitals of carbon atom (n) in the molecule on the LUMO.
4-Benzyl-3-chloromethylmorpholine 5a, ${ }^{11}$ 4-benzyl-3-
chloromethyl-1-methylpiperazine $5 \mathrm{c}^{12}$ and 1-benzyl-2-chloromethylpiperidine $5 \mathbf{d d}^{13}$ were prepared according to the cited literature methods.

4-Benzyl-3-chloromethyltetrahydro-4H-1,4-thiazine 5b--A mixture of 3-hydroxymethyltetrahydro-4 $\mathrm{H}-1,4$-thiazine ${ }^{14}$ (10.0 $\mathrm{g}, 75 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(20.7 \mathrm{~g}, 150 \mathrm{mmol})$, benzyl bromide (12.8 g , 75 mmol) and butan-2-one ($100 \mathrm{~cm}^{3}$) was heated to reflux for 6 h . The reaction mixture was filtered and the filtrate was concentrated to dryness. The residue was chromatographed on silica gel with CHCl_{3} to give 4-benzyl-3-hydroxymethyltetra-hydro- $4 \mathrm{H}-1,4$-thiazine ($13.9 \mathrm{~g}, 83 \%$), as a pale brown oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3400,2910$ and $1450 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.35$
$(1 \mathrm{H}, \mathrm{m}), 2.50(1 \mathrm{H}, \mathrm{m}), 2.74(2 \mathrm{H}, \mathrm{m}), 2.95(2 \mathrm{H}, \mathrm{m}), 3.18(1 \mathrm{H}, \mathrm{m})$, $3.75\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.79\left(1 \mathrm{H}, \mathrm{dd}, J 10\right.$ and $\left.6, \mathrm{CH}_{2} \mathrm{OH}\right)$, $3.91\left(1 \mathrm{H}, \mathrm{d}, J 13, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.99\left(1 \mathrm{H}, \mathrm{dd}, J 10\right.$ and $\left.7, \mathrm{CH}_{2} \mathrm{OH}\right)$ and $7.30\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right) ; m / z 223\left(\mathrm{M}^{+}\right), 192\left(\mathrm{M}^{+}-\mathrm{HOCH}_{2}\right)$ and 91. A mixture of this oil ($13.9 \mathrm{~g}, 62 \mathrm{mmol})$, thionyl chloride $(14.0 \mathrm{~g}, 120 \mathrm{mmol})$ and $\mathrm{CHCl}_{3}\left(139 \mathrm{~cm}^{3}\right)$ was heated to reflux for 1 h . The solvent was evaporated and the residue was basified with aqueous NaHCO_{3} and extracted with CHCl_{3}. The organic layer was concentrated to give a crude product, which was chromatographed on silica gel with CHCl_{3} to afford $5 \mathbf{5 b}(14.6 \mathrm{~g}$, 85%) as a pale brown oil; $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2910,2810$ and 1440 ; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.39(1 \mathrm{H}, \mathrm{m}), 2.64-2.90(4 \mathrm{H}, \mathrm{m}), 3.05$ $(1 \mathrm{H}, \mathrm{m}), 3.17(1 \mathrm{H}, \mathrm{m}), 3.75\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Cl}\right), 4.22$ $\left(1 \mathrm{H}, \mathrm{dd}, J 11\right.$ and $\left.10, \mathrm{CH}_{2} \mathrm{Cl}\right)$ and $7.31\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right) ; m / z$ $241\left(\mathrm{M}^{+}\right), 192\left(\mathrm{M}^{+}-\mathrm{ClCH}_{2}\right)$ and 91.

3-(Acetylamino)methyl-4-benzylmorpholine 12a and 6-Acetyl-amino-4-benzylhexahydro-1,4-oxazepine 13a.-A mixture of 5a $(5.1 \mathrm{~g}, 23 \mathrm{mmol}), \mathrm{NaN}_{3}(3.0 \mathrm{~g}, 46 \mathrm{mmol})$ and $\mathrm{MeCN}\left(100 \mathrm{~cm}^{3}\right)$ was heated to reflux for 2 h . The reaction mixture was concentrated to dryness and the residue was extracted with ethyl acetate (AcOEt). The extract was washed with water, dried and concentrated to give a pale brown oil consisting of 10 a and $11 \mathrm{a}(4.6 \mathrm{~g}, 87 \%) ; \nu_{\max }$ (neat)/ $\mathrm{cm}^{-1} 2090\left(\mathrm{~N}_{3}\right) ; m / z 232\left(\mathrm{M}^{+}\right)$. The oil was analysed by HPLC (see footnote a in Table 1); the retention time and the ratio of 10 a and 11 a were $6.6 \mathrm{~min}(68 \%)$ and $7.9 \mathrm{~min}(32 \%)$, respectively. Sodium bis(2-methoxyethoxy)aluminium hydride (70% solution in toluene; $11.5 \mathrm{~g}, 40 \mathrm{mmol}$) was added dropwise to a stirred solution of the oily mixture of 10 a and $11 \mathrm{a}(4.6 \mathrm{~g})$ in toluene ($\left.50 \mathrm{~cm}^{3}\right)$ over a period of 30 min at $5^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for an additional 3 h . The excess of reagent was decomposed with water at $5^{\circ} \mathrm{C}$. To the solution was added $48 \% \mathrm{aq} . \mathrm{NaOH}$, and the resulting organic layer was separated, dried and filtered. To the filtrate was added $\mathrm{Ac}_{2} \mathrm{O}(4.0 \mathrm{~g}, 49 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h and washed successively with 48% aq. NaOH and water. The organic layer was dried and concentrated to give crude products, which were purified by medium pressure column chromatography on silica gel with hexane-AcOEt (5:1) to give 12a ($2.8 \mathrm{~g}, 57 \%$) and 13a ($1.2 \mathrm{~g}, 24 \%$).

Compound 12a: m.p. $78-80^{\circ} \mathrm{C}$ (from diethyl ether) (Found: $\mathrm{C}, 67.5 ; \mathrm{H}, 8.2 ; \mathrm{N}, 11.3 . \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $67.72 ; \mathrm{H}, 8.12$; $\mathrm{N}, 11.28 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1640(\mathrm{CONH}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.33(1 \mathrm{H}$, ddd, $J 11,10$ and $3,5-$ $\left.\mathrm{H}_{\mathrm{ax}}\right), 2.65(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.74\left(1 \mathrm{H}\right.$, ddd, $J 11,3$ and $3,5-\mathrm{H}_{\mathrm{eq}}$), $3.31\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13, \mathrm{CH}_{2} \mathrm{Ph}\right.$), 3.46 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ NHAc and $2-\mathrm{H}_{\mathrm{ax}}$), $3.56\left(1 \mathrm{H}\right.$, ddd, $J 11,10$ and $3,6-\mathrm{H}_{\mathrm{ax}}$), $3.74(1 \mathrm{H}$, dddd, $J 11,3,3$ and $1,6-\mathrm{H}_{\mathrm{eq}}$), $3.79\left(1 \mathrm{H}\right.$, ddd, $J 11,3$ and $\left.1,2-\mathrm{H}_{\mathrm{eq}}\right), 4.03(1 \mathrm{H}$, d, $\left.J 13, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.30(1 \mathrm{H}, \mathrm{m}, \mathrm{CONH})$ and $7.27-7.42(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right) ; m / z 248\left(\mathrm{M}^{+}\right), 176\left(\mathrm{M}^{+}-72\right)$ and 91.
Compound 13a: pale brown oil (Found: C, 66.7; H, 8.1; N, 11.3. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 1 / 4 \quad \mathrm{H}_{2} \mathrm{O}$ requires C , $66.51 ; \mathrm{H}, 8.17 ; \mathrm{N}$, $11.08 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1645(\mathrm{CONH}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.79(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe})$, $2.64(1 \mathrm{H}$, ddd, $J 13,12$ and $6,3-\mathrm{H}$), 2.72 $(1 \mathrm{H}, \mathrm{dd}, J 13$ and $4,5-\mathrm{H}), 2.85\left(1 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $\left.3,5-\mathrm{H}^{\prime}\right), 2.90$ (1 H , ddd, $J 13,8$ and $5,3-\mathrm{H}^{\prime}$), 3.58 ($1 \mathrm{H}, \mathrm{d}, J 13, \mathrm{CH}_{2} \mathrm{Ph}$), 3.66-3.78 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 3.67 (1 H , ddd, J13, 3 and 1, 7-H), 3.72 $\left(1 \mathrm{H}, \mathrm{d}, J 13, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.89\left(1 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $\left.4,7-\mathrm{H}^{\prime}\right), 4.08$ $(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 6.30(1 \mathrm{H}, \mathrm{m}, \mathrm{CONH})$ and $7.25-7.42(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right) ; m / z 248\left(\mathrm{M}^{+}\right), 189\left(\mathrm{M}^{+}-59\right)$ and 91.

Compounds $\mathbf{1 2 b}-\mathrm{d}$ and $13 \mathrm{~b}-\mathrm{d}$ were prepared by the same procedure. The retention times of $\mathbf{1 0 b - d}$ and $\mathbf{1 1 b} \mathbf{d}$ and their ratios were determined by HPLC and are summarized in Table 1.

3-(Acetylamino)methyl-4-benzyltetrahydro-4H-1,4-thiazine
12b: 41%; m.p. $89-91^{\circ} \mathrm{C}$ (from diethyl ether) (Found: C, 63.6; $\mathrm{H}, 7.9 ; \mathrm{N}, 10.7$; S, 11.9. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2}$ OS requires C, $63.60 ; \mathrm{H}, 7.63$; $\mathrm{N}, 10.60 ; \mathrm{S}, 12.13 \%) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1635$ (CONH); $\delta_{\mathrm{H}}(300$
$\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 1.95 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), 2.41 (1 H , ddd, $J 14,6$ and $3,6-\mathrm{H}), 2.46(1 \mathrm{H}, \mathrm{dd}, J 14$ and $6,2-\mathrm{H}), 2.67(1 \mathrm{H}, \mathrm{ddd}, J 14$, 9 and $3,6-\mathrm{H}^{\prime}$), $2.78(1 \mathrm{H}$, ddd, $J 12,6$ and $3,5-\mathrm{H}), 2.87(1 \mathrm{H}$, dd, $J 14$ and $3,2-\mathrm{H}^{\prime}$), $2.98(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.16(1 \mathrm{H}$, ddd, $J 12,9$ and $\left.3,5-\mathrm{H}^{\prime}\right), 3.62$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NHAc}$), 3.71 ($1 \mathrm{H}, \mathrm{d}, J_{14}, \mathrm{CH}_{2} \mathrm{Ph}$), $3.85\left(1 \mathrm{H}, \mathrm{d}, J 14, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.78(1 \mathrm{H}, \mathrm{m}, \mathrm{CONH})$ and $7.20-7.38$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$); m/z $264\left(\mathrm{M}^{+}\right), 192\left(\mathrm{M}^{+}-72\right)$ and 91.

6-Acetylamino-4-benzylhexahydro-1,4-thiazepine 13b: 48\%; m.p. $95-97^{\circ} \mathrm{C}$ (from diethyl ether) (Found: C, 63.5; H, 7.9; N, 10.6; S, 12.0. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2}$ OS requires C, $63.60 ; \mathrm{H}, 7.63 ; \mathrm{N}, 10.60$; $\mathrm{S}, 12.13 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1645$ (CONH); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.70(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.60-2.71(2 \mathrm{H}, \mathrm{m}), 2.77(1 \mathrm{H}, \mathrm{dd}, J$ 14 and 5), 2.81-2.85 ($2 \mathrm{H}, \mathrm{m}$), $2.87(1 \mathrm{H}, \mathrm{dd}, J 5$ and 2$), 2.99$ ($1 \mathrm{H}, \mathrm{dd}, J 14$ and 3), $3.08(1 \mathrm{H}, \mathrm{dt}, J 14$ and 5), $3.56(1 \mathrm{H}, \mathrm{d}, J 13$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.78\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.12(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 5.88$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CONH}$) and 7.22-7.38 ($5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$); m/z $264\left(\mathrm{M}^{+}\right.$), $205\left(\mathrm{M}^{+}-59\right)$ and 91.
3-(Acetylamino)methyl-4-benzyl-1-methylpiperazine 12c: 68\%; pale brown oil (Found: C, 69.1; H, 9.0; N, 15.8. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$ requires C, $68.93 ; \mathrm{H}, 8.87 ; \mathrm{N}, 16.08 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1640$ (CONH); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.97$ (3 H, s, COMe), 2.08-2.23 ($2 \mathrm{H}, \mathrm{m}$), 2.25 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), $2.34(1 \mathrm{H}, \mathrm{dt}, J 10$ and 3), 2.54 ($1 \mathrm{H}, \mathrm{m}$), 2.59-2.66 ($2 \mathrm{H}, \mathrm{m}$), 2.81 (1 H , ddd, $J 12,4$ and 3), 3.28 $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.46(2 \mathrm{H}, \mathrm{m}), 3.98\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 6.19 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CONH}$) and 7.20-7.38 ($5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$); m/z 261 $\left(\mathrm{M}^{+}\right), 189\left(\mathrm{M}^{+}-72\right)$ and 91.
6-Acetylamino-4-benzyl-1-methylhexahydro-1H-1,4-diazepine 13c: 15%; pale brown oil (Found: C, 68.7; H, 8.6; N, 16.3. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 68.93 ; \mathrm{H}, 8.87 ; \mathrm{N}, 16.08 \%$); $\nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1640(\mathrm{CONH}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.85(3 \mathrm{H}$, s, COMe), 2.37 (3 H, s, NMe), 2.40-3.01 ($8 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}$ and $7-\mathrm{H}), 3.50\left(1 \mathrm{H}, \mathrm{d}, J 15, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.70(1 \mathrm{H}, \mathrm{d}, J 15$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.01(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 6.48(1 \mathrm{H}, \mathrm{m}, \mathrm{CONH})$ and $7.25-$ $7.37\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} P h\right) ; m / z 261\left(\mathrm{M}^{+}\right), 202\left(\mathrm{M}^{+}-59\right)$ and 91.
2-(Acetylamino)methyl-1-benzylpiperidine 12d: 32\%; pale brown oil (Found: C, $72.9 ; \mathrm{H}, 8.9 ; \mathrm{N}, 11.2 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ requires C, $73.13 ; \mathrm{H}, 9.00 ; \mathrm{N}, 11.37 \%$); $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 1640$ (CONH); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.20-1.80(6 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 4-\mathrm{H}$ and $5-\mathrm{H})$, $1.98(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.15(1 \mathrm{H}, \mathrm{dt}, J 12$ and $3,6-\mathrm{H}), 2.52(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}), 2.90\left(1 \mathrm{H}, \mathrm{dt}, J 12\right.$ and $\left.4,6-\mathrm{H}^{\prime}\right), 3.30(1 \mathrm{H}, \mathrm{d}, J 15$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NHAc}\right), 3.98$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15, \mathrm{CH}_{2} \mathrm{Ph}$), $6.18(1 \mathrm{H}, \mathrm{m}, \mathrm{CONH})$ and $7.22-7.42\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right)$; $m / z 246$ $\left(\mathrm{M}^{+}\right), 174\left(\mathrm{M}^{+}-72\right)$ and 91.
3-Acetylamino-1-benzylhexahydro-1H-azepine 13d: 54\%; m.p. $68-70^{\circ} \mathrm{C}$ (from toluene) (Found: C, 72.3; H, 9.1; N, 11.3. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}$ requires C, $72.08 ; \mathrm{H}, 9.03 ; \mathrm{N}, 11.21 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1630(\mathrm{CONH}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.40-1.91$ ($6 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}$ and $6-\mathrm{H}$), 1.74 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), 2.52-3.10 (4 $\mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $7-\mathrm{H}), 3.46\left(1 \mathrm{H}, \mathrm{d}, J 14, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.73(1 \mathrm{H}, \mathrm{d}, J$ $\left.14, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.94(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.18(1 \mathrm{H}, \mathrm{m}, \mathrm{CONH})$ and $7.22-$ $7.41\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right) ; m / z 246\left(\mathrm{M}^{+}\right), 187\left(\mathrm{M}^{+}-59\right)$ and 91 .

N-Benzyl-2-(benzyloxycarbonyl)amino-3-hydroxypropionamide 15.-A mixture of N-benzyloxycarbonyl-DL-serine $(5.0 \mathrm{~g}$, $21 \mathrm{mmol})$, benzylamine ($2.23 \mathrm{~g}, 21 \mathrm{mmol}$), 1-ethyl-3-(3dimethylamino) propylcarbodiimide hydrochloride $(4.02 \mathrm{~g}, 21$ mmol) and DMF ($25 \mathrm{~cm}^{3}$) was stirred at room temperature for 6 h and then poured into ice-water. The precipitate was filtered off and recrystallized from EtOH to give $15(4.2 \mathrm{~g}, 59 \%)$, m.p. $142{ }^{\circ} \mathrm{C}$ (Found: C, $65.6 ; \mathrm{H}, 6.0 ; \mathrm{N}, 8.7 . \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, $65.84 ; \mathrm{H}, 6.14 ; \mathrm{N}, 8.53 \%) ; \delta_{\mathrm{H}}\left[200 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 3.52-3.72$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{H}_{2} \mathrm{OH}\right), 4.10(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.30(2 \mathrm{H}, \mathrm{d}, J 6$, $\left.\mathrm{NCH} \mathrm{H}_{2} \mathrm{Ph}\right), 4.89\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 4, \mathrm{CH}_{2} \mathrm{OH}\right), 5.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, 7.15-7.44 ($10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}$) and $8.41(1 \mathrm{H}, \mathrm{t}, J \mathrm{6}$, $\mathrm{N} \mathrm{HCO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$).

3-Benzylamino-2-(benzyloxycarbonyl)aminopropan-1-ol 16. -To a stirred solution of compound $15(4.0 \mathrm{~g}, 12.2 \mathrm{mmol})$
in THF ($80 \mathrm{~cm}^{3}$) was added $\mathrm{BH}_{3} \cdot$ THF $\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 43 \mathrm{~cm}^{3}, 43\right.$ mmol) at $5{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 16 h after which the excess of reagent was decomposed with $10 \% \mathrm{HCl}\left(26 \mathrm{~cm}^{3}\right)$. The reaction mixture was heated to reflux for 1 h and then concentrated to dryness. The residue was basified with 48% aq. NaOH and extracted with diethyl ether. The organic layer was dried and concentrated to give $16(2.8 \mathrm{~g}$, 75%), m.p. $92-93{ }^{\circ} \mathrm{C}$ (from diethyl ether) (Found: $\mathrm{C}, 68.7 ; \mathrm{H}$, 7.3; $\mathrm{N}, 8.7 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 68.77$; $\mathrm{H}, 7.05 ; \mathrm{N}, 8.91 \%$); $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.81\left(1 \mathrm{H}\right.$, dd, $J 12$ and $\left.4, \mathrm{CH}_{2} \mathrm{NH}\right), 3.04$ (1 H , dd, $J 12$ and $4, \mathrm{CH}_{2} \mathrm{NH}$), 3.65-3.90 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CHCH} 2 \mathrm{OH}$), $3.77\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 5.78(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NHCO}_{2}\right)$ and $7.25-7.41\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right)$.

4-Benzyl-6-(benzyloxycarbonyl)aminohexahydro-1,4-oxa-zepin-3-one 18.-To a mixture of compound $16(2.0 \mathrm{~g}, 6.4$ mmol), triethylamine ($770 \mathrm{mg}, 7.7 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added chloroacetyl chloride ($713 \mathrm{mg}, 6.4 \mathrm{mmol}$) at $-5^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h and then washed with water. The organic layer was dried and concentrated to give a crude product, which was chromatographed on silica gel to give 3-(N-benzyl- N-chloroacetyl)amino-2-(benzyloxy-carbonyl)aminopropan-1-ol 17 as a pale brown oil ($1.5 \mathrm{~g}, 60 \%$). To a solution of $17(1.5 \mathrm{~g}, 3.8 \mathrm{mmol})$ in THF $\left(30 \mathrm{~cm}^{3}\right)$ was added Bu'OK ($650 \mathrm{mg}, 5.8 \mathrm{mmol}$). After being stirred at room temperature for 12 h , the reaction mixture was evaporated to dryness and the residue was chromatographed on silica gel with CHCl_{3} to give $18(0.6 \mathrm{~g}, 44 \%)$ as a pale brown oil; $v_{\max }$ (neat)/ $\mathrm{cm}^{1} 1700\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$ and $1630(\mathrm{CON}) ; \delta_{\mathrm{H}}(200$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $3.52-3.98(5 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 6-\mathrm{H}$ and $7-\mathrm{H}), 4.17$ ($1 \mathrm{H}, \mathrm{d}, J 14,2-\mathrm{H}), 4.25\left(1 \mathrm{H}, \mathrm{d}, J 15, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.45(1 \mathrm{H}, \mathrm{d}, J 14$, $\left.2-\mathrm{H}^{\prime}\right), 4.73\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $5.04\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, $5.08\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCO}_{2}\right)$ and $7.15-7.40\left(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right.$ and $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$).

4-Benzyl-6-(benzyloxycarbonyl)aminohexahydro-1,4-oxazepine 19.-To a solution of compound $18(0.4 \mathrm{~g}, 1.13 \mathrm{mmol})$ in anhydrous THF ($12 \mathrm{~cm}^{3}$) was added $\mathrm{BH}_{3} \cdot \mathrm{THF}\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 3.4\right.$ $\mathrm{cm}^{3}, 3.4 \mathrm{mmol}$) at $5^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 16 h after which the excess of reagent was decomposed with 5% aq. $\mathrm{HCl}\left(12 \mathrm{~cm}^{3}\right)$. The mixture was heated to reflux for 1 h and then concentrated to dryness. The residue was basified with $48 \% \mathrm{NaOH}$ and extracted with diethyl ether. The extract was dried and concentrated to give 19 as a pale brown oil ($0.31 \mathrm{~g}, 74 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1710\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$; $\delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.45-2.95(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $5-\mathrm{H}), 3.50-$ $3.82\left(6 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 7-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.91(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 5.06(2$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 5.68(1 \mathrm{H}, \mathrm{m}, \mathrm{CONH})$ and $7.20-7.42(10 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right) ; m / z 340\left(\mathbf{M}^{+}\right), 189\left(\mathbf{M}^{+}-151\right)$ and 91.

Alternative Synthesis of 13a.-A mixture of compound 19 (0.8 $\mathrm{g}, 2.4 \mathrm{mmol})$ and $47 \% \mathrm{HBr}\left(4 \mathrm{~cm}^{3}\right)$ was heated at $60^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, the reaction mixture was washed with ether. The aqueous layer was basified with 48% aq. NaOH , extracted with CHCl_{3} and dried. $\mathrm{Ac}_{2} \mathrm{O}(0.48 \mathrm{~g}, 4.8$ mmol) was added to the extract and the mixture was stirred at room temperature for 16 h . The mixture was washed successively with aqueous NaOH and brine and then dried and evaporated to leave 13a as a pale brown oil $(0.49 \mathrm{~g}, 82 \%)$.

Methyl 2-Acetylamino-3-[2(benzylamino)ethylsulfanyl]propionate 24.-A mixture of methyl 2-acetylaminoacrylate $21^{6}{ }^{6}$ (1.2 $\mathrm{g}, 8.4 \mathrm{mmol})$ and 2-benzylaminoethanethiol $22^{7}(1.5 \mathrm{~g}, 8.4$ mmol) was stirred at room temperature for 16 h . The reaction mixture was chromatographed on silica gel with CHCl_{3} to give 24 as a pale brown oil ($1.67 \mathrm{~g}, 62 \%$); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1740$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ and $1650(\mathrm{CONH}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.01(3 \mathrm{H}, \mathrm{s}$, COMe), 2.65-2.95 (4 H, m, SCH $\mathrm{CH}_{2} \mathrm{~N}$), $2.99(2 \mathrm{H}, \mathrm{d}, J 5$,
$\left.\mathrm{CH}_{2} \mathrm{~S}\right), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.81\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.85(1 \mathrm{H}$, $\mathrm{m}, \mathrm{AcNHCH}), 6.64(1 \mathrm{H}, \mathrm{m}, \mathrm{CONH})$ and $7.22-7.40(5 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{Ph}$).

Methyl 2-Acetylamino-3-[N-(2-benzylaminoethyl)-N-methylamino]propionate 25.-According to the procedure described above, the reaction of $21(5.0 \mathrm{~g}, 35 \mathrm{mmol})$ with N^{1}-benzyl- N^{2} methylethylenediamine $23^{8}(14.4 \mathrm{~g}, 87.5 \mathrm{mmol})$ gave $25(9.2 \mathrm{~g}$, 86%) as a pale brown oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1740\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ and $1650(\mathrm{CONH}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.24(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.35$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 2.49-2.88 ($7 \mathrm{H}, \mathrm{m}$), $3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.78$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.51(1 \mathrm{H}, \mathrm{dd}, J 13$ and 6$)$ and $7.05-7.28$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} P h$).

Alternative Synthesis of $\mathbf{1 3 b}$.-To a stirred solution of compound $24(1.67 \mathrm{~g}, 5.2 \mathrm{mmol})$ in toluene ($32 \mathrm{~cm}^{3}$) was added a solution of diisobutylaluminium hydride in THF (1 mol $\mathrm{dm}^{-3} ; 15.5 \mathrm{~cm}^{3}, 15.5 \mathrm{mmol}$) at $-70^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 1 h after which the excess of reagent was decomposed with $\mathrm{MeOH}\left(32 \mathrm{~cm}^{3}\right)$ at $-70^{\circ} \mathrm{C}$. NaBH_{4} $(196 \mathrm{mg}, 5.2 \mathrm{mmol})$ was added to the reaction mixture at $-20^{\circ} \mathrm{C}$ which was then stirred at room temperature for 16 h and finally concentrated to dryness. The residue was chromatographed on silica gel with CHCl_{3} to give $13 \mathrm{~b}(0.9 \mathrm{~g}$, 66%) as a pale brown oil.

Alternative Synthesis of 13c.-According to the procedure described above, compound $25(4.5 \mathrm{~g}, 14.7 \mathrm{mmol})$ was cyclized to 13 c as a pale brown oil ($3.0 \mathrm{~g}, 78 \%$).

Alternative Synthesis of 13d.-A mixture of 3-amino-1-benzylhexahydro- 1 H -azepine ${ }^{9}(1.0 \mathrm{~g}, 4.9 \mathrm{mmol}), \mathrm{Ac}_{2} \mathrm{O}(0.6 \mathrm{~g}$, 5.9 mmol) and $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 16 h . The mixture was then washed successively with aqueous NaOH and brine, dried and evaporated to leave a crude product. This was chromatographed on silica gel with CHCl_{3} to afford $\mathbf{1 3 d}(1.1 \mathrm{~g}, 91 \%)$ as a pale brown oil.

Acknowledgements

The authors thank the staff of the Analytical Chemistry Division of Exploratory Research Laboratories, Dainippon Pharmaceutical Company, for elemental analyses and spectral measurements.

References

1 S. Kato, T. Morie, K. Hino, T. Kon, S. Naruto, N. Yoshida, T. Karasawa and J. Matsumoto, J. Med. Chem., 1990, 33, 1406.

2 S. Kato, T. Morie, H. Harada, N. Yoshida and J. Matsumoto, Chem. Pharm. Bull., 1992, 40, 652.
3 S. Kato, T. Morie, T. Kon, N. Yoshida, T. Karasawa and J. Matsumoto, J. Med. Chem., 1991, 34, 616.

4 S. Kato, T. Morie, N. Yoshida and J. Matsumoto, Chem. Pharm. Bull., 1992, 40, 1470.
5 G. R. Brown, A. J. Foubister and B. Wright, J. Chem. Soc., Perkin Trans. 1, 1987, 553.
6 A. J. Kolar and R. K. Olsen, Synthesis, 1977, 457.
7 H. Langendorff and R. Koch, Strahlentherapie, 1956, 99, 567.
8 E. Jucker and E. Rissi, Helv. Chim. Acta, 1962, 45, 2383.
9 K. Matsunaga, K. Fujikawa and M. Muto, Jap P 303 988/1988.
10 M. J. S. Dewar, E. G. Zoebish, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902.

11 G. R. Brown, A. J. Foubister and D. Stribling, J. Chem. Soc., Perkin Trans. 1, 1987, 547.
12 S. Sharma, R. N. Iyer and N. Anand, Indian J. Chem., 1975, 13, 468.
13 E. S. Schipper, W. R. Boehme, M. L. Graeme, E. Siegnund and E. Chinery, J. Med. Pharm. Chem., 1961, 4, 79.

14 J. R. Piper and T. P. Johnston, J. Org. Chem., 1963, 28, 981.
Paper 4/02548B
Received 29th April 1994
Accepted 23rd May 1994

